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SMARANDACHE CURVES OF SOME SPECIAL

CURVES IN THE GALILEAN 3-SPACE

H. S. Abdel-Aziz and M. Khalifa Saad∗

Abstract. In the present paper, we consider a position vector of
an arbitrary curve in the three-dimensional Galilean space G3. Fur-
thermore, we give some conditions on the curvatures of this arbi-
trary curve to study special curves and their Smarandache curves.
Finally, in the light of this study, some related examples of these
curves are provided and plotted.

1. Introduction

Discovering Galilean space-time is probably one of the major achieve-
ments of non relativistic physics. Nowadays Galilean space is becoming
increasingly popular as evidenced from the connection of the funda-
mental concepts such as velocity, momentum, kinetic energy, etc. and
principles as indicated in [7]. In recent years, researchers have begun
to investigate curves and surfaces in the Galilean space and thereafter
pseudo-Galilean space.
In classical curve theory, the geometry of a curve in three-dimensions is
essentially characterized by two scalar functions, curvature κ and torsion
τ as well as its Frenet vectors. A regular curve in Euclidean space whose
position vector is composed by Frenet frame vectors on another regular
curve is called a Smarandache curve. Smarandache curves have been
investigated by some differential geometers [2, 8]. M. Turgut and S. Yil-
maz defined a special case of such curves and call it Smarandache TB2

curves in the space E4
1 [8]. They studied special Smarandache curves

which are defined by the tangent and second binormal vector fields. Ad-
ditionally, they computed formulas of this kind curves. In [2], the author
introduced some special Smarandache curves in the Euclidean space. He
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studied Frenet-Serret invariants of a special case.
In the field of computer aided design and computer graphics, helices can
be used for the tool path description, the simulation of kinematic motion
or the design of highways, etc. [12]. The main feature of general helix
or slope line is that the tangent makes a constant angle with a fixed
direction in every point which is called the axis of the general helix. A
classical result stated by Lancret in 1802 and first proved by de Saint
Venant in 1845 says that: A necessary and sufficient condition that a
curve be a general helix is that the ratio (κ/τ) is constant along the
curve, where κ and τ denote the curvature and the torsion, respectively.
Also, the helix is also known as circular helix or W-curve which is a
special case of the general helix [11].
Salkowski (resp. Anti-Salkowski) curves in Euclidean space are gener-
ally known as family of curves with constant curvature (resp. torsion)
but nonconstant torsion (resp. curvature) with an explicit parametriza-
tion.They were defined in an earlier paper [6].
In this paper, we compute Smarandache curves for a position vector of
an arbitrary curve and some of its special curves. Besides, according to
Frenet frame T, N, B of the considered curves in the Galilean space G3,
the meant Smarandache curves TN, TB and TNB are obtained. We
hope these results will be helpful to mathematicians who are specialized
on mathematical modeling.

2. Preliminaries

Let us recall the basic facts about the three-dimensional Galilean
geometry G3. The geometry of the Galilean space has been firstly ex-
plained in [10]. The curves and some special surfaces in G3 are con-
sidered in [3]. The Galilean geometry is a real Cayley-Klein geometry
with projective signature (0, 0,+,+) according to [5]. The absolute of
the Galilean geometry is an ordered triple (w, f, I ) where w is the ideal
(absolute) plane (x0 = 0), f is a line in w (x0 = x1 = 0) and I is elliptic
((0 : 0 : x2 : x3) −→ (0 : 0 : x3 : −x2)) involution of the points of f .
In the Galilean space there are just two types of vectors, non-isotropic
x(x, y, z) (for which holds x 6= 0). Otherwise, it is called isotropic. We
do not distinguish classes of vectors among isotropic vectors in G3. A
plane of the form x = const. in the Galilean space is called Euclidean,
since its induced geometry is Euclidean. Otherwise it is called isotropic
plane. In affine coordinates, the Galilean inner product between two
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vectors P = (p1, p2, p3) and Q = (q1, q2, q3) is defined by [4]:

(2.1) 〈P,Q〉G3 =

{
p1q1 if p1 6= 0 ∨ q1 6= 0,
p2q2 + p3q3 if p1 = 0 ∧ q1 = 0.

And the cross product in the sense of Galilean space is given by:

(2.2) (P ×Q)G3
=





∣∣∣∣∣∣

0 e2 e3
p1 p2 p3
q1 q2 q3

∣∣∣∣∣∣
; if p1 6= 0 ∨ q1 6= 0,

∣∣∣∣∣∣

e1 e2 e3
p1 p2 p3
q1 q2 q3

∣∣∣∣∣∣
; if p1 = 0 ∧ q1 = 0.

A curve η(t) = (x(t), y(t), z(t)) is admissible in G3 if it has no inflection
points (η̇(t)× η̈(t) 6= 0) and no isotropic tangents (ẋ(t) 6= 0). An admis-
sible curve in G3 is an analogue of a regular curve in Euclidean space.
For an admissible curve η : I → G3, I ⊂ R parameterized by the arc
length s with differential form dt = ds, given by

(2.3) η(s) = (s, y(s), z(s)).

The curvature κ(s) and torsion τ(s) of η are defined by

κ(s) =
∥∥∥η′′

(s)
∥∥∥ =

√
y′′(s)2 + z′′(s)2,

τ(s) =
det(η′(s), η′′(s), η′′′(s))

κ2(s)
.(2.4)

Note that an admissible curve has non-zero curvature. The associated
trihedron is given by

T(s) = η
′
(s) = (1, y

′
(s), z

′
(s)),

N(s) =
η
′′
(s)

κ(s)
=

(0, y
′′
(s), z

′′
(s))

κ(s)
,

B(s) =
(0,−z

′′
(s), y

′′
(s))

κ(s)
.(2.5)

For derivatives of the tangent T, normal N and binormal B vector field,
the following Frenet formulas in the Galilean space hold [10]

(2.6)




T
N
B



′

=




0 κ 0
0 0 τ
0 −τ 0






T
N
B


 .
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From (2.5) and (2.6), we derive an important relation

η′′′(s) = κ′(s)N(s) + κ(s)τ(s)B(s).

In [8] authors introduced:

Definition 2.1. A regular curve in Minkowski space-time, whose
position vector is composed by Frenet frame vectors on another regular
curve, is called a Smarandache curve.

In the light of the above definition, we adapt it to admissible curves
in the Galilean space as follows:

Definition 2.2. let η = η(s) be an admissible curve in G3 and
{T,N,B} be its moving Frenet frame. SmarandacheTN,TB andTNB
curves are respectively, defined by

ηTN =
T+N

‖T+N‖ ,

ηTB =
T+B

‖T+B‖ ,

ηTNB =
T+N+B

‖T+N+B‖ .(2.7)

3. Smarandache curves of an arbitrary curve in G3

In this section, we consider the position vector of an arbitrary curve
with curvature κ(s) and torsion τ(s) in the Galilean space G3 which
introduced by [2] as follows

(3.1) r(s) =

(
s,
∫ (∫

κ(s) cos
(∫

τ(s)ds
)
ds
)
ds,∫ (∫

κ(s) sin
(∫

τ(s)ds
)
ds
)
ds

)
.

The derivatives of this curve are respectively, given by

r′(s) =
(
1,

∫
κ(s) cos

(∫
τ(s) ds

)
ds,

∫
κ(s) sin

(∫
τ(s) ds

)
ds

)
,

r′′(s) =
(
0, κ(s) cos

(∫
τ(s) ds

)
, κ(s) sin

(∫
τ(s) ds

))
,

(3.2) r′′′(s) =
(

0, κ′(s) cos
(∫

τ(s) ds
)− κ(s)τ(s) sin

(∫
τ(s) ds

)
,

κ′(s) sin
(∫

τ(s) ds
)
+ κ(s)τ(s) cos

(∫
τ(s) ds

)
)
.

The frame vector fields of r are as follows

Tr =

(
1,

∫
κ(s) cos

(∫
τ(s) ds

)
ds,

∫
κ(s) sin

(∫
τ(s) ds

)
ds

)
,
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Nr =

(
0, cos

(∫
τ(s) ds

)
, sin

(∫
τ(s) ds

))
,

(3.3) Br =

(
0,− sin

(∫
τ(s) ds

)
, cos

(∫
τ(s) ds

))
.

By Definition (2.2), the TN, TB and TNB Smarandache curves of r
are respectively, written as

rTN =

(
1, cos

(∫
τ(s) ds

)
+

∫
κ(s) cos

(∫
τ(s) ds

)
ds,∫

κ(s) sin
(∫

τ(s) ds
)
ds+ sin

(∫
τ(s) ds

)
)
,

rTB =

(
1,
∫
κ(s) cos

(∫
τ(s) ds

)
ds− sin

(∫
τ(s) ds

)
,

cos
(∫

τ(s) ds
)
+

∫
κ(s) sin

(∫
τ(s) ds

)
ds

)
,

(3.4) rTNB =




1, cos
(∫

τ(s) ds
)
+

∫
κ(s) cos

(∫
τ(s) ds

)
ds

− sin
(∫

τ(s) ds
)
, cos

(∫
τ(s) ds

)
+∫

κ(s) sin
(∫

τ(s) ds
)
ds+ sin

(∫
τ(s) ds

)


 .

4. Smarandache curves of some special curves in G3

4.1. Smarandache curves of a general helix

Let α(s) be a general helix in G3 with (τ/κ = m = const.)which can
be written as

(4.1) α(s) =

(
s, 1

m

∫
sin

(
m

∫
κ(s) ds

)
ds,

−1
m

∫
cos

(
m

∫
κ(s) ds

)
ds

)
.

Then α′, α′′, α′′′ for this curve are respectively, expressed as

α′(s) =
(
1,

1

m
sin

(
m

∫
κ(s) ds

)
,
−1

m
cos

(
m

∫
κ(s) ds

))
,

α′′(s) =
(
0, κ(s) cos

(
m

∫
κ(s) ds

)
, κ(s) sin

(
m

∫
κ(s) ds

))
,

(4.2) α′′′(s) =




0, κ′(s) cos
(
m

∫
κ(s) ds

)−
m κ2(s) sin

(
m

∫
κ(s) ds

)
,

κ′(s) sin
(
m

∫
κ(s) ds

)
+

m κ2(s) cos
(
m

∫
κ(s) ds

)


 .

The moving Frenet vectors of α(s) are given by

Tα =

(
1,

1

m
sin

(
m

∫
κ(s) ds

)
,
−1

m
cos

(
m

∫
κ(s) ds

))
,
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Nα =

(
0, cos

(
m

∫
κ(s) ds

)
, sin

(
m

∫
κ(s) ds

))
,

(4.3) Bα =

(
0,− sin

(
m

∫
κ(s) ds

)
, cos

(
m

∫
κ(s) ds

))
.

From which, Smarandache curves are obtained

αTN =

(
1, cos

(
m

∫
κ(s) ds

)
+ 1

m sin
(
m

∫
κ(s) ds

)
,

−1
m cos

(
m

∫
κ(s) ds

)
+ sin

(
m

∫
κ(s) ds

)
)
,

αTB =

(
1,−

(
m− 1

m

)
sin

(
m

∫
κ(s) ds

)
,

(
m− 1

m

)
cos

(
m

∫
κ(s) ds

))
,

(4.4) αTNB =

(
1, cos

(
m

∫
κ(s) ds

)− (
m−1
m

)
sin

(
m

∫
κ(s) ds

)
,(

m−1
m

)
cos

(
m

∫
κ(s) ds

)
+ sin

(
m

∫
κ(s) ds

)
)
.

4.2. Smarandache curves of a circular helix

Let β(s) be a circular helix in G3 with (τ = a = const., κ = b =
const.) which can be written as

(4.5) β(s) =

(
s, a

∫ (∫
cos(bs) ds

)
ds, a

∫ (∫
sin(bs) ds

)
ds

)
.

For this curve, we have

β′(s) =
(
1,

a

b
sin(bs),−a

b
cos(bs)

)
,

β′′(s) = (0, a cos(bs), a sin(bs)) ,

(4.6) β′′′(s) = (0,−ab sin(bs), ab cos(bs)) .

Making necessary calculations from above, we have

Tβ =
(
1,

a

b
sin(bs),−a

b
cos(bs)

)
,

Nβ = (0, cos(bs), sin(bs)) ,

(4.7) Bβ = (0,− sin(bs), cos(bs)) .

Considering the last Frenet vectors, the TN, TB and TNB Smaran-
dache curves of β are respectively, as follows

βTN =
(
1, cos(bs) +

a

b
sin(bs),−a

b
cos(bs) + sin(bs)

)
,

βTB =

(
1,

(
a− b

b

)
sin(bs),

(
b− a

b

)
cos(bs)

)
,
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(4.8) βTNB =

(
1, cos(bs) +

(
a−b
b

)
sin(bs),(

b−a
b

)
cos(bs) + sin(bs)

)
.

4.3. Smarandache curves of a Salkowski curve

Let γ(s) be a Salkowski curve in G3 with (τ = τ(s), κ = a = const.)
which can be written as

(4.9) γ(s) =

(
s, a

∫ (∫
cos

(∫
τ(s) ds

)
ds

)
ds,

a
∫ (∫

sin
(∫

τ(s) ds
)
ds

)
ds

)
.

If we differentiate this equation three times, one can obtain

γ′(s) =
(
1, a

∫
cos

(∫
τ(s) ds

)
ds , a

∫
sin

(∫
τ(s) ds

)
ds

)
,

γ′′(s) =
(
0, a cos

(∫
τ(s) ds

)
, a sin

(∫
τ(s) ds

))
,

(4.10) γ′′′(s) =
(

0,−a τ(s) sin
(∫

τ(s) ds
)
,

a τ(s) cos
(∫

τ(s) ds
)

)
.

In addition to that, the tangent, principal normal and binormal vectors
of γ are in the following forms

Tγ =

(
1, a

∫
cos

(∫
τ(s) ds

)
ds, a

∫
sin

(∫
τ(s) ds

)
ds

)
,

Nγ =

(
0, cos

(∫
τ(s) ds

)
, sin

(∫
τ(s) ds

))
,

(4.11) Bγ =

(
0,− sin

(∫
τ(s) ds

)
, cos

(∫
τ(s) ds

))
.

Furthermore, Smarandache curves for γ are

γTN =

(
1, cos

(∫
τ(s) ds

)
+ a

∫
cos

(∫
τ(s) ds

)
ds,

a
∫
sin

(∫
τ(s) ds

)
ds+ sin

(∫
τ(s) ds

)
)
,

γTB =

(
1, a

∫
cos

(∫
τ(s) ds

)
ds− sin

(∫
τ(s) ds

)
,

cos
(∫

τ(s) ds
)
+ a

∫
sin

(∫
τ(s) ds

)
ds

)
,

(4.12) γTNB =




1, cos
(∫

τ(s) ds
)
+ a

∫
cos

(∫
τ(s) ds

)
ds

− sin
(∫

τ(s) ds
)
, cos

(∫
τ(s) ds

)
+

a
∫
sin

(∫
τ(s) ds

)
ds+ sin

(∫
τ(s) ds

)


 .
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4.4. Smarandache curves of Anti-Salkowski curve

Let δ(s) be Anti-Salkowski curve in G3 with (κ = κ(s), τ = a =
const.) which can be written as

(4.13) δ(s) =

(
s,
∫ (∫

κ(s) cos(as)ds
)
ds,∫ (∫

κ(s) sin(as)ds
)
ds

)
.

It gives us the following derivatives

δ′(s) =
(
1,

∫
κ(s) cos(as)ds,

∫
κ(s) sin(as)ds

)
,

δ′′(s) = (0, κ(s) cos(as), κ(s) sin(as)) ,

(4.14) δ′′′(s) =
(

0, κ′(s) cos(as)− a κ(s) sin(as),
κ′(s) sin(as) + a κ(s) cos(as)

)
.

Further, we obtain the following Frenet vectors T, N, B in the form

Tδ =

(
1,

∫
κ(s) cos(as)ds,

∫
κ(s) sin(as)ds

)
,

Nδ = (0, cos(as), sin(as)) ,

(4.15) Bδ = (0,− sin(as), cos(as)) .

Thus the above computations of Frenet vectors are give Smarandache
curves by

δTN =

(
1, cos(as) +

∫
κ(s) cos(as) ds,

∫
κ(s) sin(as) ds+ sin(as)

)

δTB =

(
1,

∫
κ(s) cos(as) ds− sin(as), cos(as) +

∫
κ(s) sin(as)ds

)

(4.16) δTNB =

(
1, cos(as) +

∫
κ(s) cos(as) ds− sin(as),

cos(as) +
∫
κ(s) sin(as)ds+ sin(as)

)

5. Examples

Example 5.1. Let α : I −→ G3 be an admissible curve and κ 6= 0 of
class C2, τ 6= 0 of calss C1 its curvature and torsion, respectively written
as

α(s) =
(
s,

s

10
(−2 cos(2 ln s) + sin(2 ln s)) ,− s

10
(cos(2 ln s) + 2 sin(2 ln s))

)
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By differentiation, we get

α′(s) =
(
1, cos(ln s) + sin(ln s),−1

2
cos(2 ln s)

)
,

α′′(s) =
(
0,

cos(2 ln s)

s
,
sin(2 ln s)

s

)
,

α′′′(s) =
(
0,−cos(2 ln s) + 2 sin(2 ln s)

s2
,
2 cos(2 ln s)− sin(2 ln s)

s2

)
.

Using (2.5) to obtain

Tα =

(
1, cos(ln s) sin(ln s),−1

2
cos(2 ln s)

)
,

Nα = (0, cos(2 ln s), sin(2 ln s)) ,

Bα = (0,− sin(2 ln s), cos(2 ln s)) .

The natural equations of this curve are given by

κα =
1

s
, τα =

2

s
.

Thus, the Smarandache curves of α are respectively, given by

αTN =

(
1, cos(2 ln s) + cos(ln s) sin(ln s),−1

2
cos(2 ln s) + sin(2 ln s)

)
,

αTB =

(
1,− cos(ln s) sin(ln s),

1

2
cos(2 ln s)

)
,

αTNB =

(
1, cos(2 ln s)− cos(ln s) sin(ln s),

1

2
cos(2 ln s) + sin(2 ln s)

)
.

The curve α and their Smarandache curves are shown in Figures 1,2.

0
5

10

x

-0.5
0.0
0.5
1.0

y

0

1

2

z

Figure 1. The general helix α in G3 with κ = 1
s and τ = 2

s .
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Figure 2. From left to right, the TN, TB and TNB
Smarandache curves of α.

Example 5.2. For an admissible curve δ(s) in G3 parameterized by

δ(s) =

(
s,

e−s

25
(−3 cos(2s)− 4 sin(2s)),

e−s

25
(4 cos(2s)− 3 sin(2s))

)
,

we use the derivatives of δ; δ′, δ′′, δ′′′ to get the associated trihedron of δ
as follows

Tδ =

{
1,−e−s

5
(cos(2s)− 2 sin(2s)),−e−s

5
(2 cos(2s) + sin(2s))

}
,

Nδ = (0, cos(2s), sin(2s)) ,

Bδ = (0,− sin(2s), cos(2s)) .

Curvature κ(s) and torsion τ(s) are obtained as follows

κδ = e−s, τδ = 2.

According to the above calculations, Smarandache curves of δ are

δTN =

(
1, cos(2s)− 1

5e
−s(cos(2s)− 2 sin(2s)),

sin(2s)− 1
5e

−s(2 cos(2s) + sin(2s))

)
,

δTB =

(
1,− e−s

5 (cos(2s) + (−2 + 5es) sin(2s)) ,

cos(2s)− e−s

5 (2 cos(2s) + sin(2s))

)
,

δTNB =

(
1, cos(2s)− e−s

5 (cos(2s)− 2 sin(2s))− sin(2s),

cos(2s) + sin(2s)− e−s

5 (2 cos(2s) + sin(2s))

)
.
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Figure 3. The Anti-Salkowski curve δ in G3 with κδ =
e−s and τδ = 2.
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Figure 4. The TN, TB and TNB Smarandache curves
of δ.

6. Conclusion

In the three-dimensional Galilean space, Smarandache curves of an
arbitrary curve and some special curves such as helix, circular helix,
Salkowski and Ant-Salkowski curves have been studied. To confirm our
main results, two examples (helix and Anti-Salkowski curves) have been
given and illustrated.
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